sintonia/library/ecasound-2.7.2/libecasound/audioio-tone.cpp

283 lines
7.4 KiB
C++

// ------------------------------------------------------------------------
// audioio-tone.cpp: Tone generator
//
// Adaptation to Ecasound:
// Copyright (C) 2007-2009 Kai Vehmanen (adaptation to Ecasound)
//
// Sources for sine generation (cmt-src-1.15/src/sine.cpp):
//
// Computer Music Toolkit - a library of LADSPA plugins. Copyright (C)
// 2000-2002 Richard W.E. Furse. The author may be contacted at
// richard@muse.demon.co.uk.
//
// Attributes:
// eca-style-version: 3 (see Ecasound Programmer's Guide)
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ------------------------------------------------------------------------
#include <algorithm>
#include <string>
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <math.h> /* C++'s standard <cmath> does not define M_PI */
#include <kvu_message_item.h>
#include <kvu_numtostr.h>
#include <kvu_dbc.h>
#include "eca-object-factory.h"
#include "samplebuffer.h"
#include "audioio-tone.h"
#include "eca-error.h"
#include "eca-logger.h"
/**
* FIXME notes (last update 2008-03-06)
*
* - define the syntax: is this 'tone', 'sinetone',
* 'tone=sine', ..., or?
* - add support for multichannel testing (different
* frequnecies for different channels?)
*/
using std::cout;
using std::endl;
using std::atof;
using std::string;
/* Sine table size is given by (1 << SINE_TABLE_BITS). */
#define SINE_TABLE_BITS 14
#define SINE_TABLE_SHIFT (8 * sizeof(unsigned long) - SINE_TABLE_BITS)
SAMPLE_SPECS::sample_t *g_pfSineTable = NULL;
SAMPLE_SPECS::sample_t g_fPhaseStepBase = 0;
static void initialise_sine_wavetable(void)
{
if (g_pfSineTable == NULL) {
unsigned long lTableSize = (1 << SINE_TABLE_BITS);
double dShift = (double(M_PI) * 2) / lTableSize;
g_pfSineTable = new SAMPLE_SPECS::sample_t[lTableSize];
if (g_pfSineTable != NULL)
for (unsigned long lIndex = 0; lIndex < lTableSize; lIndex++)
g_pfSineTable[lIndex] = SAMPLE_SPECS::sample_t(sin(dShift * lIndex));
}
if (g_fPhaseStepBase == 0) {
g_fPhaseStepBase = (SAMPLE_SPECS::sample_t)pow(2, sizeof(unsigned long) * 8);
}
}
AUDIO_IO_TONE::AUDIO_IO_TONE (const std::string& name)
: m_lPhaseStep(0),
m_fCachedFrequency(0),
m_fLimitFrequency(0),
m_fPhaseStepScalar(0)
{
set_label(name);
initialise_sine_wavetable();
}
AUDIO_IO_TONE::~AUDIO_IO_TONE(void)
{
}
AUDIO_IO_TONE* AUDIO_IO_TONE::clone(void) const
{
AUDIO_IO_TONE* target = new AUDIO_IO_TONE();
for(int n = 0; n < number_of_params(); n++) {
target->set_parameter(n + 1, get_parameter(n + 1));
}
target->set_position_in_samples(position_in_samples());
if (ECA_AUDIO_POSITION::length_set())
target->ECA_AUDIO_POSITION::set_length_in_samples(ECA_AUDIO_POSITION::length_in_samples());
target->buffersize_rep = buffersize_rep;
target->finished_rep = finished_rep;
target->m_lPhase = m_lPhase;
target->m_lPhaseStep = m_lPhaseStep;
DBC_CHECK(target->m_fCachedFrequency == m_fCachedFrequency);
target->m_fLimitFrequency = m_fLimitFrequency;
target->m_fPhaseStepScalar = m_fPhaseStepScalar;
return target;
}
void AUDIO_IO_TONE::open(void) throw(AUDIO_IO::SETUP_ERROR &)
{
DBC_CHECK(samples_per_second() != 0);
if (io_mode() != AUDIO_IO::io_read)
throw(SETUP_ERROR(SETUP_ERROR::io_mode, "AUDIO_IO_TONE: Writing to tone generator not allowed!"));
finished_rep = false;
m_fLimitFrequency
= SAMPLE_SPECS::sample_t(samples_per_second() * 0.5);
m_fPhaseStepScalar
= SAMPLE_SPECS::sample_t(g_fPhaseStepBase / samples_per_second());
/* recalculate m_fLimitFrequency and mfPhaseStepScalar */
if (m_fCachedFrequency)
setPhaseStepFromFrequency(m_fCachedFrequency, true);
AUDIO_IO::open();
}
void AUDIO_IO_TONE::close(void)
{
AUDIO_IO::close();
}
bool AUDIO_IO_TONE::finite_length_stream(void) const
{
return ECA_AUDIO_POSITION::length_set();
}
void AUDIO_IO_TONE::read_buffer(SAMPLE_BUFFER* sbuf)
{
/* write to sbuf->buffer[ch], similarly as the LADSPA
* chainops */
sbuf->number_of_channels(channels());
/* set the length according to our buffersize */
if ((ECA_AUDIO_POSITION::length_set() == true) &&
((position_in_samples() + buffersize())
>= ECA_AUDIO_POSITION::length_in_samples())) {
/* over requested duration, adjust buffersize */
SAMPLE_BUFFER::buf_size_t partialbuflen =
ECA_AUDIO_POSITION::length_in_samples()
- position_in_samples();
if (partialbuflen < 0)
partialbuflen = 0;
DBC_CHECK(partialbuflen <= buffersize());
sbuf->length_in_samples(partialbuflen);
sbuf->event_tag_set(SAMPLE_BUFFER::tag_end_of_stream);
finished_rep = true;
}
else
sbuf->length_in_samples(buffersize());
i.init(sbuf);
i.begin();
while(!i.end()) {
for(int n = 0; n < channels(); n++) {
if (i.end())
break;
*(i.current(n))
= g_pfSineTable[m_lPhase >> SINE_TABLE_SHIFT];
}
m_lPhase += m_lPhaseStep;
i.next();
}
change_position_in_samples(sbuf->length_in_samples());
DBC_ENSURE(sbuf->number_of_channels() == channels());
}
void AUDIO_IO_TONE::write_buffer(SAMPLE_BUFFER* sbuf)
{
/* NOP */
DBC_CHECK(false);
}
SAMPLE_SPECS::sample_pos_t AUDIO_IO_TONE::seek_position(SAMPLE_SPECS::sample_pos_t pos)
{
/* note: phase must be correct after arbitrary seeks */
m_lPhase = m_lPhaseStep * pos;
if (ECA_AUDIO_POSITION::length_set() == true &&
pos <
ECA_AUDIO_POSITION::length_in_samples())
finished_rep = false;
return pos;
}
void AUDIO_IO_TONE::setPhaseStepFromFrequency(const SAMPLE_SPECS::sample_t fFrequency, bool force)
{
if (fFrequency != m_fCachedFrequency || force == true) {
if (fFrequency >= 0 && fFrequency < m_fLimitFrequency)
m_lPhaseStep = (unsigned long)(m_fPhaseStepScalar * fFrequency);
else
m_lPhaseStep = 0;
m_fCachedFrequency = fFrequency;
}
}
void AUDIO_IO_TONE::set_parameter(int param,
string value)
{
ECA_LOG_MSG(ECA_LOGGER::user_objects,
AUDIO_IO::parameter_set_to_string(param, value));
switch (param)
{
case 1:
{
AUDIO_IO::set_parameter (param, value);
break;
}
case 2:
{
/* type; only "sine" supported */
break;
}
case 3:
{
setPhaseStepFromFrequency (atof(value.c_str()), false);
break;
}
case 4:
{
double duration = atof(value.c_str());
if (duration > 0.0f)
ECA_AUDIO_POSITION::set_length_in_seconds(duration);
break;
}
}
}
string AUDIO_IO_TONE::get_parameter(int param) const
{
switch (param)
{
case 1: return AUDIO_IO::get_parameter(param);
case 2: return "sine";
case 3: return kvu_numtostr(m_fCachedFrequency);
case 4:
{
if (ECA_AUDIO_POSITION::length_set() == true)
return kvu_numtostr(ECA_AUDIO_POSITION::length_in_seconds_exact());
else
return kvu_numtostr(-1.0f);
}
default: break;
}
return std::string();
}